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A Monte Carlo simulation approach is presented for solving two problems based on 
stochastic ordinary differential equations, namely an initial-value problem for a nonlinear 
ordinary differential equation and a two-point boundary-value problem for a linear equation. 
The method consists of simulating on the computer several realizations of the random process 
which appears in the coefficients of the equations, and then computing the average over the 
corresponding solutions. Since these two problems are related to the same physical problem, 
we are able to compare the results. Several plots are given to illustrate the results and a 
discussion of the various kinds of errors which affect the method is presented. G 1988 Academic 

Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is to illustrate, by some examples, a Monte Carlo 
approach to numerically treat (a) an initial-value (IV) problem for a nonlinear 
stochastic ordinary differential equation (SODE), and (b) a two-point boundary- 
value (BV) problem for a linear SODE. The approach consists of simulating on the 
computer several realizations of the stochastic process which enters the coefficients 
of the equations, and then evaluating the average over the corresponding solutions. 
As the underlying physical problem is the same in the two cases, we shall be able to 
compare the results of (a) and (b). The procedures described here are more than 
examples, as they can be applied to more general IV-problems and BV-problems 
for SODEs. 

We start, in Section 2, with a short description of the physical problem and 
derive the equations to be numerically treated. Section 3 is divided into two parts: 
In Section 3a we give the details about the treatment of problem (a), while the 
same is done for problem (b) in Section 3b. Several graphs are then shown to 
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illustrate the results. Finally, in Section 4 we discuss the various types of numerical 
errors that affect our computations and in Section 5 we summarize the major 
points of the paper. 

In [13] we studied essentially the same physical problem by using a completely 
different technique. We numerically solved a parabolic partial differential equation 
which describes the same statistical phenomenon considered here, but in a specific 
limit. 

2. THE ORIGINAL PROBLEM 

When a plane electromagnetic wave propagates in a stratified lossless dielectric 
medium located in 0 <x < 1, along the direction of stratification, its electric field 
U(X) satisfies an equation such as 

u,, + kg(x) u = 0, O<x<l, (2.1) 

where k, = oO/c is the free-space wave number, w0 is the frequency, c is the speed of 
light in vacuum, and the dependence on time we-iwor has been omitted. 

In the case where the medium is “random,” i.e., only a statistical description of its 
properties is given, the dielectric function, f(x), becomes a stochastic process, say, 
for example, 

f(4 0) = 1+ 46 01, (2.2) 

where E > 0 is a small parameter and ~(x, w) is a suitable stochastic process on 
some probability space (Q, d, P); o E S2 denotes the “chance.” 

While the numerical algorithm below can be implemented for arbitrary statistical 
properties of p, here we make certain specific assumptions. On the one hand, these 
allow us to carry out all the computations, in practice; on the other hand they 
correspond to some suitable physical picture. More precisely, we assume p(x, w) to 
be a zero-mean, wide-sense stationary, almost-surely bounded real-valued random 
function. The process ~(x, o) is also assumed to satisfy a “mixing condition,” in a 
sufhciently strong sense (see, e.g., [S]). The dielectric function in (2.1) models, 
therefore, a large class of random media: media with p( ., .) a finite state ergodic 
Markov chain, for example, are included (cf. [S]). 

We shall take as a realization of ~(x, o) a piecewise constant function of x, equal 
to + 1 in each section of length A, in which we divide the x-interval, the sign being 
chosen at random: This is the so-called “random telegraph” process, a two-state 
Markov process. Moreover, we shall choose the two-point correlation function for 
K say P(Z), 

(2.2’) 
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which corresponds to a uniform distribution of the values rfI 1 above. The choice 
(2.2) means that we represent the dielectric function of the medium as a small 
random perturbation around a mean value, taken equal to one. 

Under these conditions, u becomes a stochastic process as well. In what follows 
the dependence on the chance o will be omitted, as is customary. 

Equation (2.1) also describes the propagation of TEM (two-wire) waves along 
certain transmission lines and the propagation of the fundamental mode in 
waveguides with random inhomogeneities. 

Equation (2.1) must be considered together with the boundary conditions 

U(O) = W), u,(O) = -ik, T(1), 
(2.3) 

u(l) = 1 + R(l), u,(l) = -ik,[ 1 - R(I)], 

which state the continuity of the field and its derivative across the borders of the 
slab at x = 0 and x = I. Here T(I) and R(I) represent the complex-valued trans- 
mission and reflection coefficients; the incoming and the outgoing waves are 
assumed to be plane waves of the form 

ul(x) = ,-iko(x-0 + R(l) eiko(x-O, x > 1, 

u*(x) = T(Z) eCikox, x < 0. 

By eliminating T(I), R(f) from (2.3) we obtain two boundary conditions involving 
u, u, only: 

u,(O) + &u(O) = 0 

u,(l) - i&u(l) = -2ik,. 
(2.3’) 

Obtaining T(I), R(I), or better the mean powers (IT(I)I (lR(1)12) = 
I- (I T(1)12), amounts to describing some of the scattering properties of the slab 
0 <X-C I and can be considered the first goal in studying wave propagation in 
random media. Now, it has been shown that, in the problem described above, R(I) 
satisfies a nonlinear ODE, the Riccati equation 

dW) 
- = 22&R(1) +2 q(l)(R(I) + 1)2, 

dl (2.4) 

associated with the initial condition 

R(0) = 0 (2.4’) 

(cf. e.g., [l, 2, lo]). 
Note that from (2.3) it follows that 

R(I) = u(l) - 1. (2.5) 
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Therefore, our goal to compute R(I) can be achieved by solving the linear 
BV-problem (2.1), (2.3’) as well as the nonlinear IV-problem (2.4), (2.4’). These are 
problems (b) and (a), respectively, which we want to treat numerically. More 
precisely, we want to obtain ( IRI 2, and ( 1 T( 2, by performing numerical 
simulation experiments. Something similar for problem (b) was done in [6, 8,9]. 
However, a detailed description was not given nor was a discussion of the errors 
included. 

We remark that coping with IV-problems such as (2.4), (2.4’) is more favorable, 
for numerical purposes, even in the corresponding deterministic problems. 

3. NUMERICAL TREATMENT 

In this section we describe the treatment of the aforementioned problems (a) and 
(b) and show the corresponding results in several graphs. We divide the presen- 
tation into two subsections, according to the two problems. 

3a. Numerical Simulation for a Nonlinear IV-Problem for a SODE 

We generate “at random” on the computer a set, say, of N realizations of the 
process p(x) = ~(x, o), and solve (2.4), (2.4’) for each of them. Then we evaluate 
the average over such N solutions, for each x. 

More precisely, we divide the interval [0, l,,,], for a given chosen value l,,, > 0 
(the maximum slab width for which we wish to compute ( IR(r)12)), in p sections of 
equal length A = l,,,/p and take as a realization of ~(x, o) a piecewise constant 
function, as described in Section 2. For the nth realization, 1 <n <N, we evaluate 
&(I,), lj =jA, j = 1, 2, . . . . p. Then we compute the average 

(3a.l) 

for j = 1, 2, . . . . p. 
When the problem can be idealized in such a way that the random perturbations 

have size E so small as to let E + 0, and the slab is so thick or the transmission line 
or guide is so long as to let l+ co, it is possible to perform a rigorous analysis 
based on some limit-theorem from Probability Theory, due to Kahsminskii [4], 
provided that E + 0, l+ co, with e21 = const. This is the so-called diffusion limit. 
Information can be obtained for the limiting-solution, in this case. In such a 
limiting theory, there appears naturally the scaled independent variable 

zq21zf 
k2 ~0 

X’ 
SE-2 

I 2 0 
p(z) cos 2k0z dz, 

where 

dlx-A)= <Ax) P(Y)> 
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is the two-point correlation function of the process p(x), and s represents, essen- 
tially, its power spectral density. 

In order to make a meaningful comparison with this theory, we rewrite (2.4) with 
the variable r. Setting for short, 

a-2&, a(T) + WL(XT), (3a.3) 

we obtain 

f = iaXR + iXB(R + l)*, O<~<Lmx, (3a.4) 

for R = R(xr), where r,,, = l,,Jx. 
Now, on the interval [0, r ,,,I divided in p sections of equal length 6 = 

z,,,/p = A/x, we approximate B(r) with the constant value /Ii E /?(rj), zj zjS in [jS, 
(j+ 1) 6), for j=O, 1,2, . . . . p - 1. We can solve explicitly (3a.4) in each interval 
[jS, (j+ 1) 6). Separating the variables in (3a.4) we obtain 

s R dR 

R, R2 + 2( 1 + 2~~) R + 1 
= iX/3j( Z - Tj), jS<z<(j+l)b. (3a.5) 

where Pj E /I($) = (h/2) sp( j$), Rj E R(jx6), and 

As 

R2+2(1+2q) R+ 1 =(R-Ri,)(R-Ri), 

where 

R$ = -(1 +2qj)+2[qj(l +qj)]“’ (3a.S) 

are real (and negative), we obtain from (3a.5) 

log ($$+,I: = ix/?j( Ri, - Ri )(T - Tj), 

i.e., 

(3a.6) 

(3a.7) 

R-R< 
=Hexp{ix/Ij(R$ -RL)(t--TV)}, 

R-R< Rj-Rf 
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and therefore the explicit formula 

R(xr) = 

exp(iX/?j(Rj+ - Ri )(T - zi)> 

1 Zj<zczj+19 

-Ri)(7-zj)} 
(3a.9) 

where Rj 5 R(j~d), j = 0, 1, 2, . . . . p - 1; R, s R(0) = 0. 
Observing that R 5 -R/ =4[qj(l +qj)]“’ and recalling that for numerical 

purposes we content ourselves with evaluating R at the discrete points (j+ 1) ~6, 
we can write 

WV+ 1)x@= (3a.10) 

As RI = l/R<, (3a.10) can be written 

R((j+l)$)=RC 

(3a.10’) 

Remark 3a.l. Formula (3a.10) (or (3a.10’)) holds for arbitrary, not necessarily 
small, E (as in the stochastic limit theory). 

Remark 3a.2. For j = 0 we obtain from (3a.10), recalling that R(0) = 0, 

RO, 

RW = 
[ 1 

1 -exp $ $[q,(l + uo)]1/2 II 
l-$exp 

7 (3a.11) 
+ 110w2 - 

from which we obtain 

IRW)12 = (RO, 1’ 
(1 - cos yo)2 + sin2 y. 

(3a.12) 
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where we set, for short, 

Yo-~x~c?ou +10)1”*. (3a.13) 

Formula (3a.12) can also be written as 

4(RO, )’ tan2(yo/2) 
‘R(X6)‘2= [1+(R0,)2]2tan2(y,,/2)+[1-(RO+)2]2 

where the relation R? = l/RO, has been used. 

In the deterministic case, p. = 1, we have q. = l/a and therefore 

yo = 2k,$( 1 + &)I’*. 

As RO = 1/R:, we have 

2R”, 2 1 & 
= = - = - 1 - (RO, )’ R: - RO, 2[qo( 1 + rjo)]1’2 2( 1 + E)“~ ’ 

l+(RO,)* R’?+RO, 1 +Go 2+s 
1 -(Ro,)2 = R? - RO, = 2[qo( I+ qo)]1’2 = 2( 1+ &)I’* ’ 

and therefore 

(12;~t)2)2= l =EZ, 
4rlo(l +vo) 4(1 +E) 

(:+jYy= (1 +2voJ2 _ (2+4*. 
410(1+ rlo) 4(1+ 6) 

Finally we obtain the formula 

E2 
~ tanz(yo/2) 

‘R(x@‘*= 4(1 +‘I 
1+(2+E)2 = 

4(1 +E) 
tan2(yo/2) 

E2 

(2 
9 (3a.14) 

COt2[k,&( 1 + E)1’2] 

where ~o~22ko~6(1 +E) . ‘I2 Here the fixed value 6 can be replaced by a continuous 
real variable ranging over the whole interval [O, 7max]. The parameter E > 0 can also 
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take any value (not necessarily small) and also E < 0 (plasmas), provided that 
1.~1 < 1 (cf. [7, Sect. 25, p. 79, Problem 23 and also [ 11, Chap. 4, p. 97, formula 
(4.37)] for the Quantum Mechanical analogue). 

Let us now return to the stochastic problem. 

Remark 3a.3. Not every nonlinear (deterministic) ODE, even with constant 
coefficients, can be solved explicitly as in the case considered here. In general, we 
must proceed to the numerical integration of the (deterministic) equation under 
investigation, for each realization. Efficient ODE solvers do exist for this purpose. 

Here is a description of the results. We chose up to N= 100 realizations and the 
parameter values E = 0.1, kO= 0.5. Then we chose sections of unscaled length 
6 = n/2, so that s =0.079577, as the spectral density corresponding to the 
correlation function (3a.2’) can be computed explicitly by (3a.2): 

k;l-cos2k,6 1 &y=- 
2 4k;6 =86’ 

(3a.15) 

Therefore I= 1256 and, by choosing p = 4700 sections, we were able to cover scaled 
widths up to z,,, =pS/x = 5.6 (unscaled widths up to I,,, = xrmax z 7033). 

The error due to considering only N = 100 realizations is expected to be of order 
O(N-1’2) = 0( lo-‘), by the central limit theorem (see Section 4). 

Good agreement between the results of the simulation and those of the stochastic 
limit theory was already observed in [6,9]. In [6], however, the realizations were 
constructed in such a way that the values + 1 in each section were assigned 
according to an exponential distribution. 

In the Figs. la-6a we plotted the results of the numerical simulations that we 
conducted with E = 0.1, k, = 0.5 and the spectral density (3a.15) corresponding to 
the correlation function (3a.2’). The continuous curve indicates the result of the 
stochastic limit-theory (cf. [lo]). In Fig. la we show the result obtained for a single 

ITI 

” I 2 3 4 5 6 

FIG. la. A single realization of ) T12 vs T E &I, corresponding to a certain “seed.” 
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realization for the transmitted power 1 TJ * as a function of z = ss21, corresponding to 
a certain “seed,” chosen to start the generation of random numbers by means of a 
suitable routine on the computer. Such a routine is that one called GGUD in the 
IMSL package. It generates discrete uniformly distributed random numbers. We 
assume that different starting “seeds” as well as the “seed” automatically assigned 
by GGUD in the output (to be used in a subsequent call) yield uncorrelated 
sequences of (pseudo-) random numbers. In Figs. 2a, 3a, and 4a we show the results 
obtained by averaging over 10, 40 and 100 realizations, respectively. In Figs. 5a and 
6a, finally, we show two other realizations of 1 TI *, obtained by assigning different 
“seeds.” 

Single realizations can be thought of as corresponding to solutions of deter- 
ministic problems, though likely with a very irregular refractive index. Note that in 
such a case ) TJ * may become quite “large,” close to 1, for t > 0. In fact, in the deter- 
ministic lossless case, resonances may occur for certain values of the ratio l/A, A 
being the wavelength of the wave propagating through the slab, II =2z/k, when 
1 + .sp = const, k = k,( 1 + EP)‘/*, and then (almost) all power could go through the 
slab. 

The situation is quite different in the stochastic problem. There is a clear 
numerical evidence that, if we consider a sufficiently large number of realizations, 
the corresponding average of 1 T12 decays fast to zero, as T - ss21 + cc. This agrees 
with the stochastic limit-theory, where it is shown that (I TI ‘) decays exponentially 
as r + co (localization); cf. [5,6, 8-101. The physical explanation lies in the fact 
that, as the medium is assumed to be lossless, the power cannot be absorbed nor 
anyway dissipated by the medium itself. Therefore a half-space of such a medium 
must reflect back all the incident power. 

3b. Numerical Simulation for a Linear BV-Problem for a Second Order SODE 

The technique adopted here consists of constructing again several realizations of 
the process p, according to its statistical properties, by generating on the computer 

L=.I 
kc.=.5 

FIG. 2a. (I 7J2) over 10 realizations vs T E SEMI. 
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C=.I 
ko= .5 

FIG. 3a. (17J*) over 40 realizations vs T = ss21. 

1 zg SE2.e 
I 2 3 4 5 6 

FIG. 4a. (I 7J2) over 100 realizations vs T = ss21. 

FIG. 5a. A single realization of 17j2 vs z =s.s21, corresponding to a “seed” different from that of 
Fig. la. 



254 RENATO SPIGLER 

FIG. 6a. A single realization of (T(* vs I =_ss*l, corresponding to a “seed” different from those in 
Figs. la and 5a. 

suitable sequences of random numbers, and solving Eq. (2.1) with the boundary 
conditions (2.3’), by using propagator matrices. That is, we express the general 
solution of (2.1) in each section where ,U is constant, by means of a fundamental 
matrix solution and multiply all these matrices. The boundary conditions are then 
imposed. 

In practice, we again divide [O, /,,,I into p sections of equal length A = l,,,/p, 
where p = +_ 1, with the sign + chosen at random, and thus 

hj=k,[l +&pj]1’2 (3b.l) 

is the refractive index in the jth section (cf. Section 3a). 
For each q, 1 <q <p, we solve a BV-problem in the interval [0, I,], where 

I,<l,~I,,,. Writing Eq. (2.1) as a system for the vector 

z,(x) = u(x) [ 1 u,(x) ’ (3b.2) 

if O=x,<x,<x,< ... <x,-, < xq - I, denotes an increasing sequence of points, 
the solution at x=x, can be expressed as 

Z&I) = Wx,, xo) z,(xo)> (3b.3) 

where 

M(x,, xc,) = cosC~,(x, --%)I (l/h) sinCWl -x0)1 
-h, sin[h,(x, -x0)] cosCh,(x, - %)I 1 (3b.4) 

is the fundamental matrix solution of the equation for z,(x). The solution at x=x2 
can be written as 

zA%) = W-G, x,) z,(x~) = MC5 x,) M(x,, xc,) z!(xo), (3b.3’) 
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where 

Mb,, x,1= cosChAx* -x1)1 WJ sinCW2-xJl 
-hZ sin[h,(x,-x,)] cosCh,b, -x,)1 I 

(3b.4’) 

and, in general 

zl(x,)=M(x,,x,-,)z,(x,-,)= ... 

=M(xq,xy-,)M(xq-,,xq--2) ---Wx,, ~1) M(x,, xc,) z,(x,). (3b.5) 

Therefore we have 

z,b~)=M~z,(xo). (3b.6) 

The boundary conditions are imposed at this point. By specializing the procedure 
above to our problem, by assuming x, -x,- , = A, m = 1,2, . . . . q, we have 

M&n 9 x,,- ,) = MD, 01, m = 1, 2, . ..) q. (3b.7) 

By using the boundary conditions (2.3’), we get 

(3b.8’) 

(3b.8”) 

i.e., by using (3b.6), 

u(l,) = Mllu(0) - M,,ik,u(O) 

ik,u(l,) - 2iko = M21~(0) - M,,ik,u(O), 

where M, are the entries of M. By eliminating u(O), we obtain 

40) = d UU,), 

2ik,a 
UU,) = -9 ik,u - fl 

where we set, for short, 

a EM,, - ikOM,Z, 

~=M2,-ikOM22. 

(3b.9) 

(3b.10) 

(3b.11) 

.581/74/l-17 
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As we are mainly interested in the reflection coefficient, we can compute (cf. (2.5)) 

(3b.12) 

and then IR,I*= R,R: and IT,I*= 1- IR,I*. 
It is also of some interest for its physical meaning and to observe “what happens” 

inside the slab, to compute the total power or intensity 

1 
P(x)= lW12+- I~x(X)12, 

G 
(3b.13) 

for a fixed 1, O<f<l,,, and 0~x61. 
All this procedure must be repeated for several realizations and then the averages 

of I R,l*, I TJ*, P over such realizations will be computed. In Figs. lb6b we show 
the results. The parameters k, = 0.5, E = 0.3 and p = 500 (the number of sections) 
were used throughout. The higher value for E and the smaller value for p, in com- 
parison with the computations reported in Section 3a, were chosen to contain the 
“cost,” which here is higher than there. The results are qualitatively the same, even 
though the convergence to the “true” (exact) solution to the stochastic limit- 
problem (shown by the continuous curve drawn for comparison on each graph) is 
slower. 

In Fig. lb we show the result for I T(* corresponding to a single realization 

ITI’ 

L = .3 
ko= .5 
N= I 

FIG. lb. A single realization of 17J2 and of P= ~u~~+~~~~u,~~ vs T E ~$1, corresponding to a certain 
“seed.” 
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< ITI’ > 

257 

E =.3 
ko= .5 
N=4 

” 1234567 7ES&2P1 

FIG. 2b. (I ?“I*) over 4 realizations vs T = s&*1. 

(N= 1) obtained by assigning some “seed” in the routine GGUD which generates 
the sequence of random -I 1’s. The “total power” defined in (3b.13) is also shown. 
In Figs. 2b, 3b, and 4b’, we show the average ( IT(*) of the transmitted power over 
N= 4, 10 and 40 realizations, respectively. In this last figure the “total power” is 
also plotted. In Fig. 4b”, (I TI *) is computed again over N= 40 realizations, but 
starting from a different “seed.” In Fig. 5b we plot the quantity (I TI *) computed 
over N= 100 realizations, while in Figs. 6b’ and 6b” we show respectively the 
average over N= 80 realizations (where the first 40 correspond to Fig. 4b”), and 
over N= 120 realizations (with the first 80 corresponding to Fig. 6b’). 

From all of these graphs we can have a clear though only qualitative idea about 
the convergence and the numerical error, because we know the true limiting- 

v I 234567 7lSC.f 

FIG. 3b. ( 17Jz) over 10 realizations vs T ~s.s~I. 
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<ITI’> 

& = .3 
ko=.5 
N 540 

0 1234567 

FIG. 4b’. (17J2) and (P)= (Iu~~+/c,~[u,~~) over 40 realizations vs 5 = ss21. 

FIG. 4b”. (lZJ2> and (P> = (Iu~~+~;~Iu,I~) over 40 realizations, vs T = s&*1 but starting from a 
“seed” different from that in Fig. 4b’. 
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<ITI’ > 

259 

FIG. 6b’. 

FIG. 5b. (I 7J2> over 100 realizations vs 7 

<IT/* > 

z-1 

= S&21. 

E =.3 
ko=.5 
N =80 

0 1234567 z=sF.*j 

(1 ?J2) over 80 realizations (where the first 40 correspond to Fig. 4b”), 

5 CL 

<ITI* > 

‘I 
f\ 

? & =.3 
k-=.5 

5 N =I20 

0 I 2 3 4 5 6 7 z-rs &*1 

vs T = S&21. 

FIG. 6b”. ( 15”j2) over 120 realizations (where the first 80 correspond to Fig. 6b’), vs 5 ESE~I. 
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solution but we do not make any comparison with the exact solution to the 
problem with E, 1 fixed (rather than E -+ 0, 1 + co). Questions about convergence 
and errors will be addressed in the next section. 

4. ABOUT THE ERRORS 

Besides the usual truncation (or “discretization”) and round-off errors that we 
meet solving, e.g., differential equations by implementing numerical algorithms, 
here we have to take into account some additional sources of error, due to the 
statistical nature of the method we used. 

First of all we have to consider that we generate on the computer sequences of 
random numbers, according to some statistics. Suppose that we want to generate 
Gaussian (normal) random variables. In practice, however, the physical devices and 
the existing routines are unable to generate a perfectly Gaussian variable, say c(o): 
They will produce, rather, some random variable q(w) such that 

v(o) = 80) + &oh (4.1) 

where the error term 6(o) can be assumed uncorrelated with t(w) (cf. [12]). Here 
o E a represents the “chance,” ranging over some abstract space 52, which is part of 
the triplet (Sz, -01, P), the underlying probability space. Moreover it is reasonable to 
assume that (J(w)) =O, while (S2(w)) =0(1/N), N being the number of the 
realizations, besides (t(w) 6(w)) = 0. 

Furthermore, we approximate the expected value of a certain quantity, i.e, an 
integral over some space (a), with respect to some probability measure (P), by an 
average over a finite number N of realizations. This is the finite sampling error, due 
to the finite size of any sample that must necessarily be used. Suppose that (i(o), 
r2(w), . . . . <,Jw) are N independent identically distributed random variables, with 
two finite moments ,u, 0. Then the strong (and weak) law of large numbers holds, as 
well as the classical central limit theorem. Therefore, if s,,(o) = If= i ri(o), then 

P lim 
( 

SN(W) -=p =I, 
N-m N > 

and 

(4.3) 

Therefore: (i) the arithmetic mean s~(w)/N of the <Jo)‘s converges to the expec- 
ted value p of each ri(o), with probability 1, and (ii) the random variable 
(sdm) - NP)/(~ fi) converges in distribution to a Gaussian (normal) random 
variable. Equation (4.2) justifies taking the arithmetic mean, for every x, instead of 
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the expected value, and (4.3) justifies, in some sense, assuming that the error 
between the arithmetic mean and the expected value is of order 0(1/a). 

Besides computing the average 

Gl(xj) 3i ,f, gixjL j = 1, 2, . ..) p, 
I=1 

(4.4) 

of the realizations gi at any fixed value xi, that is a candidate for approximating the 
expected value of the process g(x, w) at x = xi, we compute the quantity 

G,(xj) s i ,f gf(xj), j = 1) 2, . ..) p. 
r=l 

(4.5) 

In our problem g,(xj) = IRi(xj)12. 
It is reasonable to think that G2 represents the estimated second moment. Then, if 

we compute 

[ 

10 
a&xi) = & (G2(Xj) - Gf(Xj))] 3 (4.6) 

0: is the estimated variance, and the ratio a,/G,, called the coefficient of variation, 
is generally accepted as a good measure of the (relative) sampling error; it can be 
given in percentages (cf. [3]). The appearance of N- 1 instead of N is required in 
order to have an unbiased estimator; when N & 1 the difference is, of course, 
irrelevant. 

Therefore the error to be computed is 

Emax a,(x,), (4.7) 
I<j<p i I Gl(Xj) 

In our problem we obtained E z 11.2% with N = 100 realizations, in case (b). 
Observe, however, that N= 100 realizations and the consequent low computational 
cost is very little for Monte Carlo simulations standards. 

Note. In the figures the solid line refers to the stochastic limit-theory [lo]. 
However, this represents the “true” solution only when E is sufficiently small and 1 is 
sufficiently large. 

We should also consider that computing averages over a large number of 
realizations introduces additional round-off errors, with respect to the 
corresponding deterministic case (cf. [ 121). This error may become important when 
the sample size is very large. 

Several experiments seem to show that finite sampling and, perhaps, the last 
quoted round-off error dominate the others (cf. [ 121). 
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5. SUMMARY 

In closing, let us summarize the major points of the paper. A Monte Carlo 
simulation technique has been adopted for numerically solving certain problems of 
wave propagation in random media, governed by stochastic ordinary differential 
equations. This approach is very simple and quite general: It is (trivially) suited to 
parallel computing and preserves the correct probabilistic structure of the problem. 
It can be used for solving more general stochastic ordinary differential equations, 
and is useful especially when no other methods are available. Moreover, in many 
cases it can be also computationally very cheap. 

Besides illustrating with several pictures the results relevant to the particular 
physical problem we considered, we have discussed the various sources of errors 
that beset our method and estimated the most important errors. 

All the computations were performed on CDC/Cyber 170, at the Courant 
Institute of Mathematical Sciences, New York University. 
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